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asymmetric resonators. simulations, which are very time consuming.
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method can be applied just as easily for far (racetrack, spiral, etc..) J NIST on a Chip

more complicated geometries. Racetracks are —
not the most footprint-efficient Y Chip fabricated at L. LIGENTEC

resonators—beyond racetracks there are spiral

Anisotropy apodization in W-plane

and fractal-based designs. Although some work for low losses

has been done in optimizing racetracks, going any E 'n":"ﬂ_'}-l E
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